Intracellular and Extracellular Cyanotoxins: Implications for their Environmental Significance and Health Risk Management

> Geoffrey A. Codd, Louise F. Meikleham, Fiona M. Young, Diana Menzel, Aleksandra Wojnicz Brussels

10 December 2010

Heritage Park, E. Kilbride, Glasgow: cancellation of national swimming competition, Aug-Sept.. An example of cyanobacterial bloom impact, 2010.

The compartmentation /localisation of cyanotoxins: why do we need to know?

- 1. Improved cyanobacterial bloom and cyanotoxin hazard characterisation and risk assessment with reference to:
 - (a) human health

(b) wildlife and environmental protection.

- 2. Increased understanding of cyanotoxin functions and fates.
- Identification of appropriate prevention, remediation and treatment methods for cyanobacterial blooms and cyanotoxins

Determination of cyanotoxin compartmentation by

physicochemical and immuno-methods

Localisation of microcystins into "soluble" and "particulate" phases. [Particulate = Total *minus* Soluble]: Donkmeer.

Figure 8. Total microcystin concentrations (determined by ELISA) and % total microcystin pool in soluble (dissolved) phase, for Donkmeer, 2007. Each point is the mean of triplicate determinations.

Variation in compartmentation of microcystins between particulate and soluble fractions: Brussels lakes (samples from Dr. A. Peretyatko, 2010)

	Sample	MC-LR equivalents ug/L)		% distribution	
		soluble	particulate	soluble	particulate
1	VUB 12	3.2	1.1	75	25
2	VUB 13	2.7	1.2	70	30
3	VUB 6 (scum)	307.1	151.9	67	33
4	VUB 10	3.5	2.1	62	38
5	VUB 11	1.7	1.5	54	46
6	VUB 8	0.80	0.76	51	49
7	VUB 2	1.8	2.4	43	57
8	VUB 7	< 0.5	>0.8	< 39	> 61
9	VUB 9	0.8	1.5	35	65
1 0	VUB 5	< 0.5	>1.1	< 31	> 69
1 1	VUB 4	0.8	3.2	21	79
1 2	VUB 3	0.7	3.4	18	82
1 3	VUB 1 (scum)	9.9	1639.1	1	99

All values are means of triplicate determinations

Cyanotoxin compartmentation: "particulate" and "soluble" toxin

Senescent bloom, most MC not associated with cyanobacterial cells.

Growing cells: >90% MC "particulate"

Cyanotoxins: where are they located in the waterbody ?

- 1. "Soluble", due to:
 - (a) extracellular release by intact, toxigenic cyanobacteria
 - (b) extracellular release due to cyanobacterial cell breakdown e.g. by:
 - (i) lytic bacteria
 - (ii) cyanophages
 - (iii) autolysis
 - (iv) physical forces (e.g. during water abstraction/treatment)
 - (v) chemical agents during drinking water treatment
 - (c) release of cyanotoxins from other aquatic biota (excretion)
 - (d) release from abiotic particulates (sediments)?

Cyanotoxins: where are they located in the waterbody ?

• 2. "Particulate", associated with:

(a) cyanobacterial cells

(b) other aquatic organisms (prokaryotes, eukaryotes)

(c) abiotic particulates

Example of extracellular release of microcystins by intact cyanobacterial cells

- Microcystis PCC 7806
- Axenic
- Steady state continuous culture

Irradiance (µmol.m ⁻² .s ⁻¹)	Microcystin conc. (µg.l-1)		
10	0.5 to 1.0		
40	15 to 18		

Wiedner, Visser, Fastner, Metcalf, Codd & Mur (2003) Appl. Env. Microbiol. 69, 1475-1481. Environmental/biological fates of dissolved cyanotoxins

- Susceptibility to sensitized photo-oxidation.
- Biodegradation by aquatic bacteria.
- Uptake by other aquatic microbes, grazers, fish and plants.
- (Formation of microcystin-metals complexes).
- Sorption onto sediments.

Biodegradation of microcystins by bacteria: commonly reported, but incompletely investigated

- Reports of biodegradation of MC: Australia, Canada, China, Denmark, Finland, Japan, Poland, UK
- Usually only measured as loss of MC from solution.
- Mineralisation to C02 rarely measured.
- KEY Questions:
- Toxicity of cyanotoxin/cyanotoxin products after "biodegradation"
- Can cyantoxins serve as sources of nitrogen, carbon and energy for bacterial growth ?

Examples of "biodegradation" of dissolved MC-LR in lake water: L. Rescobie, Scotland

Localisation of microcystin in cyanobacterial cells (*Microcystis aerugniosa*)

Localization of microcystins [MC] in cyanobacterial cells, colonies, filaments

Microcystis aeruginosa colonies, if positive for MC:

- all cells in the colony contain the toxins
- no gradients apparent across colonies
- major assocations of MC with thylakoids and poly-P bodies
- colony mucilage also contains MCs.

Planktothrix agardhii filaments, if positive for MC:

- all cells in filament contain the toxins
- no gradients apparent from tip to centre of filament

Cyanobacterial toxins in other aquatic microbiota

- Cyanotoxins can be taken up by a wide range of aquatic microbiota and :
- Stored
- Metabolised
- Transferred via food
 chains

- Heterotrophic bacteria (cyanotoxin-degraders).
- Zooplankton
- Phytoplankton-grazers
- Fish eggs, embryos
- Juvenile forms of fish, amphibians

Examples of cyanotoxins in zooplankton: Donkmeer and Westveld Lakes: BBlooms

Brachionus

Keratella

Brachionus, Keratella, Bosmina, Polyarthra: 23 – 118pg microcystins and/or microcystin products per zooplankton animal.

Particulate microcystins and/or microcystin products: zooplankton

Donkmeer, 19 Aug 2010: Daphnia sp.
: Leptodora sp.

• Fort Bornem, 13 Sept 2010: Daphnia sp.

(Samples from Jeroen V. Wichelen)

Sorption of pure microcystins to 50 mg/ml lake sediment

Initial MC conc.: 2.5 µg/ml Open columns: after one hour Hatched columns: after 24 hours Vertical bars: SD (n=3)

Sorption of microcystin-LR to sediment particle size fractions

Particle size fraction

50 mg/ml sediment. Open columns, I hour contact. Closed columns, 24 hours contact.

Contribution of understanding of cyanotoxin compartmentation in cyanotoxin risk management:

- 1. Aids further rational policy development for health and environmental protection.
- 2. Identifies further potential methods for cyanotoxin removal/control in waterbodies.
- 3. Is useful in selection of appropriate drinking water abstraction and treatment methods.

With thanks to -

In Dundee: Marianne Reilly Dr. James S. Metcalf

In Namur, Liège, Brussels and Gent: our friends and colleagues in the BBlooms team.

Loch Rescobie, Angus, Scotland