

Muséum National d'Histoire Naturelle – Paris http://www.mnhn.fr/mcam/

Effect of cyanotoxins on fish

Pr. Cécile Bernard National Museum of Natural History – Paris

cbernard@mnhn.fr

B-Blooms2 Bruxelles 10th december

MNHN Cyanobacterial team

- What are the controlling factors responsible for cyanobacterial toxin production?

- Which processes/mechanisms are involved in responses to cyanotoxins exposure?

Integrative approach: *diversity*, *dynamics* of cyanobacteria and *toxicology*, in their environmental context

lle de France water bodies

City Lake (Noisy-le-Grand, 93)

- Diversity of anthropogenic pressures (nature and intensity)

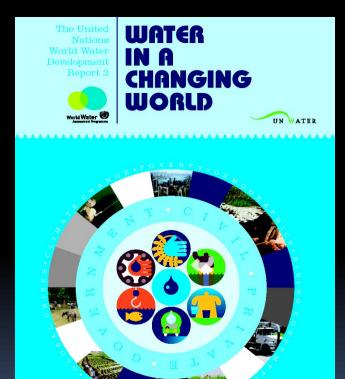
Wide range of water bodies
(990 surface water units from 0 to > 150 ha)

- High frequentation (19% of French population)

- Regional scale = management and decisions scale

Ile de France and cyanotoxins

Among the 50 sampled water bodies:


- 15 water bodies with cyanobacterial blooms + MCs
- 2 water bodies with cyanobacterial blooms + STXs (1^{rst} occurrence in France, Aphanizomenon gracile)
- 1 water bodies with cyanobacterial blooms + MCs + STXs

Ledreux et al. 2010; Catherine et al. 2010

Cyanobacterial bloom

- Increase of occurrence, dominance and bloom of potentially toxic cyanobacteria (Huissman, 2009; Ledreux et al. 2010)

- Among the main causes: global (e.g. temperature increase) and local anthropogenic (e.g. eutrophication increase) growing pressures on aquatic ecosystems

earthsca

Cyanobacterial bloom (Ile de France)

- Lake « Base Nautique Viry »
- MC concentrations (n = 24) mean. 3.5 μ g equiv. MC-LR I⁻¹

microcystins m/z 981.6 (Asp³MC-LR) 1024.8 (Asp³MC-RR) 1030.7 1038.6 (MC-RR) 1045.6 (MC-YR)

Briand et al. Water Research 2002; Yéprémian et al. 2007; Catherine et al. 2008

Cyanobacterial bloom (Ile de France)

- Lake « Grande Paroisse »

- microcystins all the year mean. 5.2 µg equiv.MC-LR I⁻¹

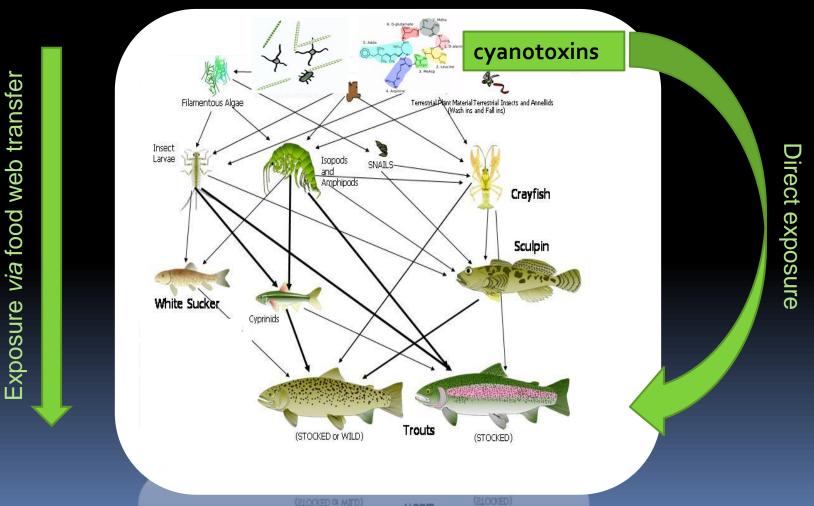
> microcystins m/z 981.6 (Asp³MC-LR) 1024.5 (Asp³MC-RR) 1031.6 1042.6 1045.5 (Asp³MC-HtyR) 1097.0 (MC-YR)

Proliferation of cyanobacterial blooms

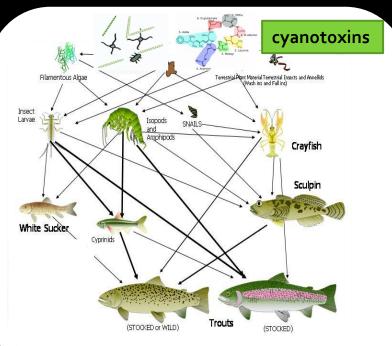
- Cyanobacteria, cyanotoxins in water bodies may have:

- Indirect effect on ecosystem functioning (e.g. biomass, dominance of cyanobacteria ...)
- Direct effect of toxins

- What are the effects of cyanotoxins on fish ?



Effects of cyanotoxins on fish

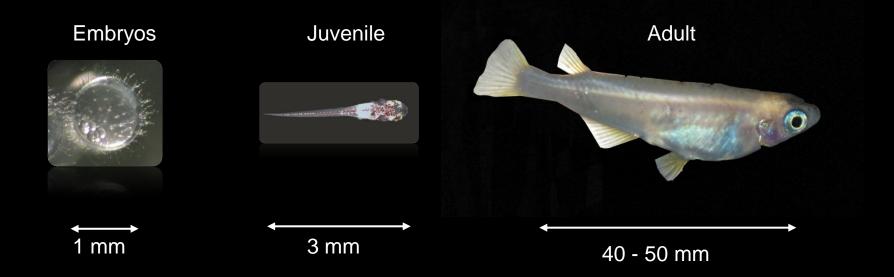

- Two ways of exposure:

i) direct contamination = acute or chronic toxicity
 ii) through the food web: modifications of biological int

ii) through the food web: modifications of biological interactions, functional alterations, ...

Ways of studying effects of cyanotoxins on fish

percensions multi-una result in increased concentrations of sopods/amphipods in a stocked tailwater? (ex. Lake Taneycomo)

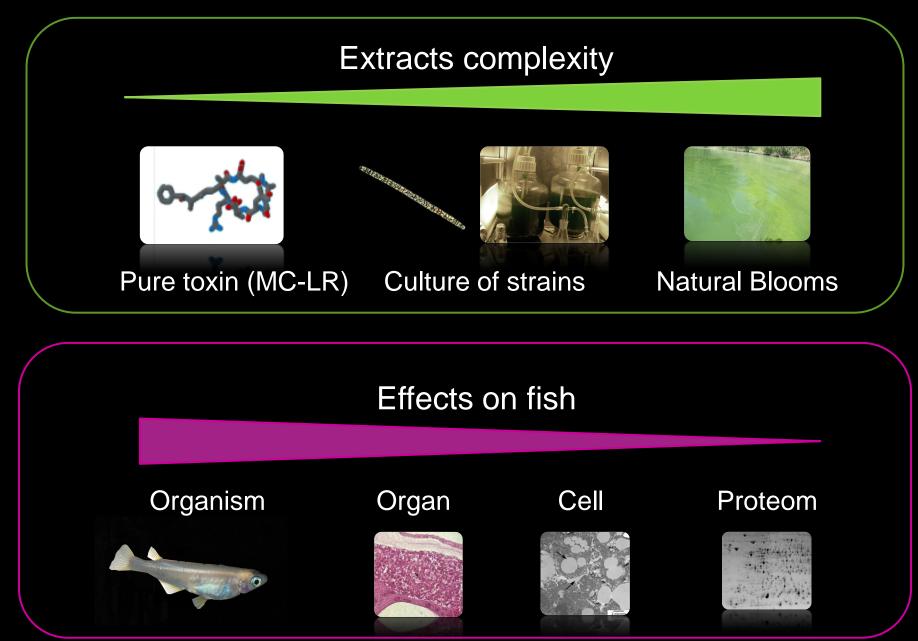

- Alterations of the dynamics of fish populations / communities

Ecosystemic approach In situ experimentation

- Mechanisms involved in responses to cyanotoxins exposure

In vitro approach

Medaka, *Oryzias latipes* biological model in Environmental Toxicology



- Easy breeding
- Model in oncology, developmental biology, toxicology

(Organization for Economic Co-operation and Development OCDE, 2006)

- Model in risk assessment programs of aquatic contaminants
- Genome completely sequenced (Kasahara et al., 2007, Nature)

Experimental design

Extracts of Planktothrix agardhii

- P. agardhii
- Culture of isolated strains and lyophilisation

http://www.mnhn.fr/mcam//Collections/Cyanobacteries.htm

PMC 75.02 microcystins m/z 1045.5 (Asp³MC-HtyR) 1024.5 (Asp³MC-RR) 981.5 (Asp³MC-LR)

PMC 87.02 microcystins free

10 µm

Extracts of Planktothrix agardhii

10 µm

- P. agardhii

- Concentration of natural blooms of « Grande Paroisse » and lyophilisation

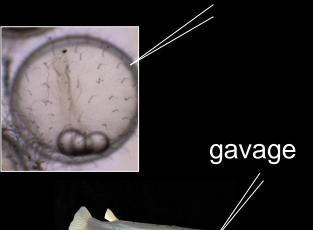
> microcystins *m/z* 981.6 (Asp³MC-LR) 1024.5 (Asp³MC-RR) 1031.6 1042.6 1045.5 (Asp³MC-HtyR) 1097.0 (MC-YR)

Tests on Medaka: acute toxicity at different stages of development

- Embryos:

Microinjection (stage 19) Embryotoxicity: acute toxicity

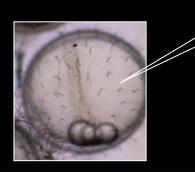
- Adults (young adults)


i) gavage: acute intoxication

control of the administered dose

ii) balneation: acute intoxication

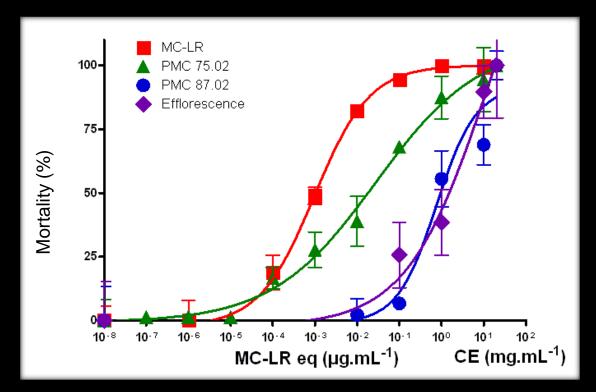
close to environmental exposure (high toxic bloom event)


microinjection

Acute toxicity on embryos

- Injection into the vitellus of late neurula embryos (stage 19) of medaka i) pure toxin (MC-LR),

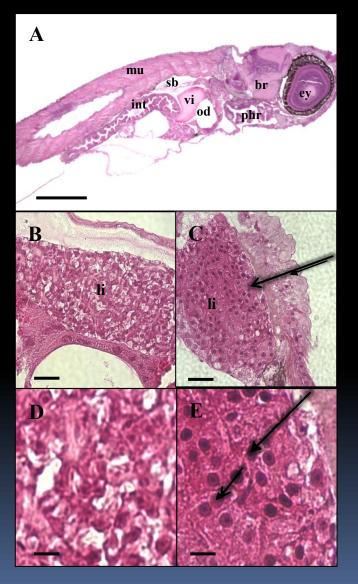
ii) strains (PMC75.02 and 87.02)


iii) natural bloom (« Grande Paroisse »)

by microinjection (2 nl)

Precoce hatchingBut no delay in embryo developmentDecrease of survival rate

Embryos survival rate



pure toxin (MC-LR) > P. a. MC+ (PMC75.02) > P. a.natural bloom = P. a. MC-free (PMC87.02)

Difference in toxicity related to MCs variants and their diffusion properties into the vitellus

Lecoz et al. Toxicon 2008; Malécot 2010

Acute toxicity on embryos

- Light microscopy sagittal sections (A), and transverse sections (B–E) of hatched (day 11 pf) control medaka embryos (A, B, D) and embryos injected with 10 µg CE mL⁻¹ of the *P*. agardhii MC⁺ strain extract (PMC 75.02) (C, E).

- Clair unstained zones in hepatocytes referred as normal glycogen accumulation in control (D) and the loss of these areas in extract-injected embryos (arrows in E).

> Hepatic hemorrhage Loss of glycogen storage

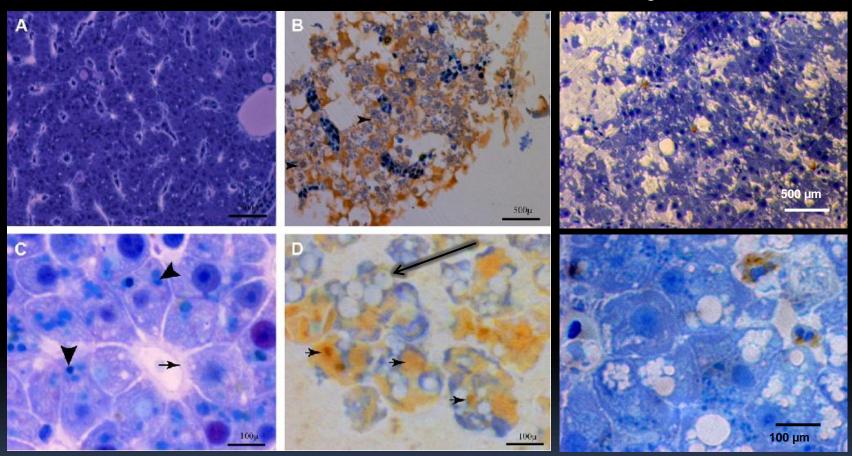
Lecoz et al. Toxicon 2008

Acute toxicity on adults

- 1 dose, 2 hours exposure:
i) MC-LR: 5 μL of 1 μg μL⁻¹ MC-LR solution, during 2 h
ii) & iii) extracts of *Planktothrix agardhii* (culture and bloom): 5 μL of extract at 0.5 μg μL⁻¹ eq. MC-LR

Acute toxicity on adults

- Tissue distribution of tritium-labelled dihydroMC-LR administered to adult medaka *via* gavage after different exposure times (2h, 24h, 72h)



Effects of microcystins on liver

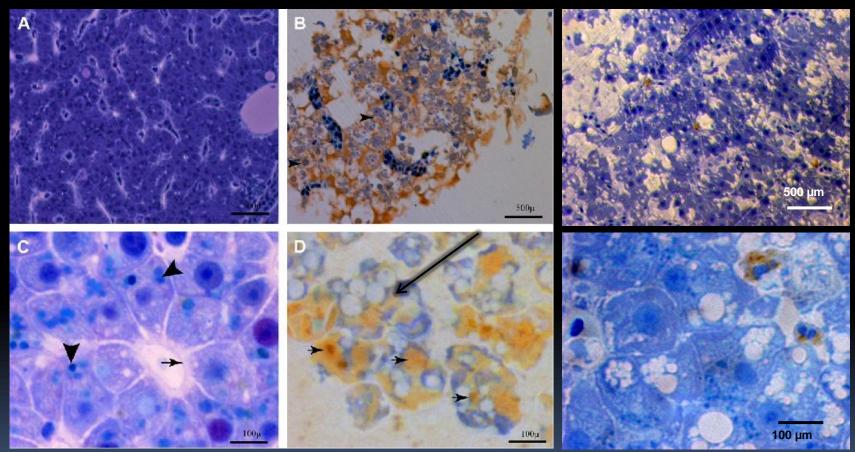
Control

MC-LR

P. agardhii extracts

Cell lysis Vacuolisation of the hepatocytes Loss of glycogen storage and glycoproteins

Djediat *et al. 2010*


Effects of microcystins on liver

Immunolocalisation of microcystins:

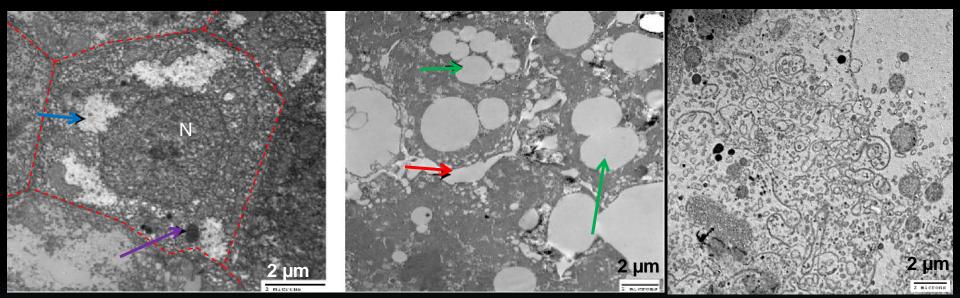
Control

MC-LR

P. agardhii extracts

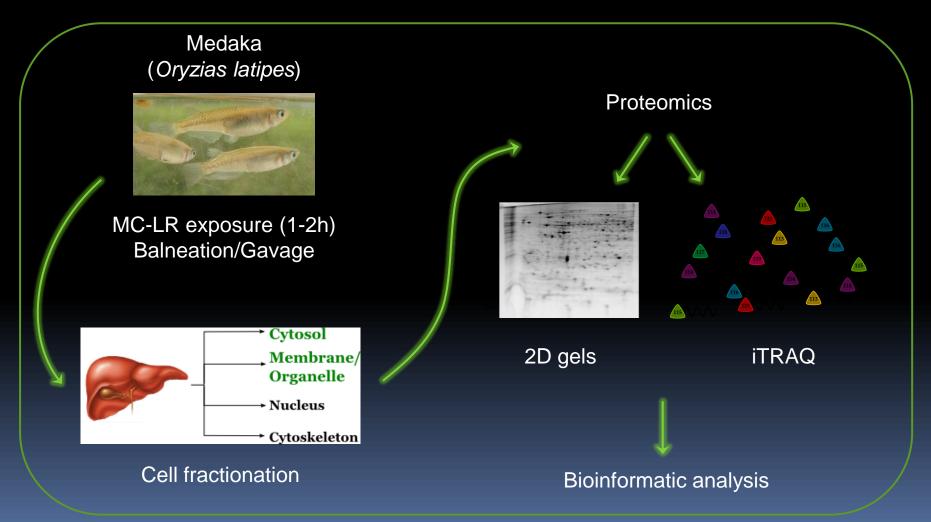
Immunolocalisation of MC in the hepatocytes and the macrophages

Djediat et al. 2010


Effects of microcystins on cell liver

Electron microscopy:

Control


P. agardhii extracts

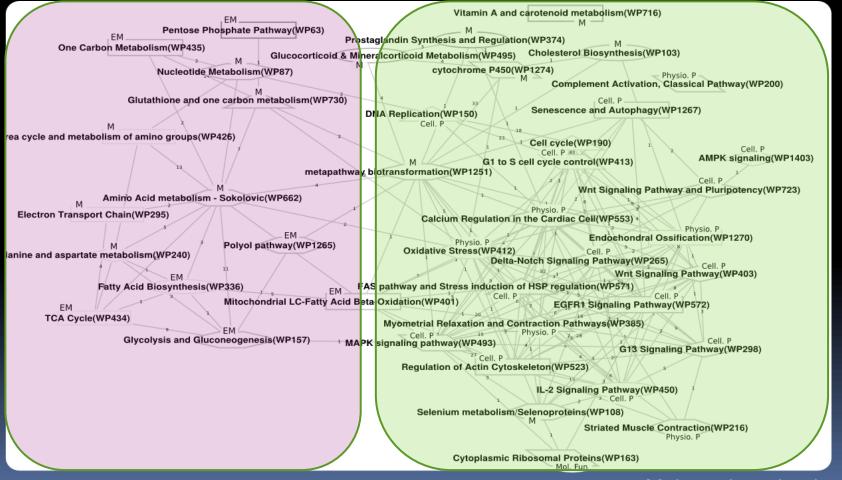
Cells are disrupted: cytoskeleton disorganisation Loss of the storages of glycogen and glycoproteins Lipidic droplets Large beaches of cytoplasm

Effects of MC-LR on liver proteome

- Which proteins are modulated after microcystin exposure ?

Effects of MC-LR on liver proteome

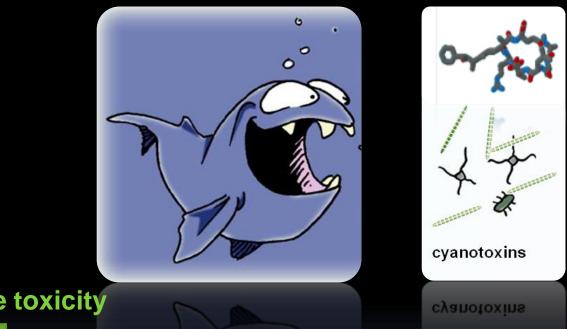
42 proteins are modulated significantly 22 down-regulated, 20 up-regulated


Several functions:

Sugar, lipids and AA metabolism Oxidative stress (e.g. AldH) Protein maturation and degradation MAPK Cytoskeletton (e.g. α tubulin)

Mehzoud et al. Aquatic Toxicology 2008; Toxicon, 2008; Malécot et al. submitted

Effects of MC-LR on liver proteome


- Interactions network among proteins involved in microcystin responses i) metabolic network (AA, sugar ...), ii) physiologic network (stress induction, ...) in relation to the cell/organs alterations

Mehzoud et al. submitted

Effects of microcystins on fish

- What are the effects of cyanotoxins on fish ?

Acute toxicity

Toxic effects of microcystins (pure, strains and natural bloom) on embryo and adults whatever the exposition (microinjection, gavage & balneation)

Effects of microcystins on fish

Liver and intestine : the most altered Necrosis and cellular lysis

Cell disruption

Detoxification with macrophages activation Decrease of glycogen storage Increase of lipid droplets

Modifications of proteins expression Metabolic pathways are first modified

Perspectives

- Chronic vs acute intoxication?
 Impact on male and female gonads?
 Proteomic studies
- Comparison between *in vitro* exposure results and natural fish exposed to cyanobacterial bloom?
- Does multiple toxins have synergistic or additive effects?
- Transfer of microcystins through the food web to human?

Thanks to the MNHN medaka's team

Dr Marc Edery Dr Karim Mehzoud Pr Simone Puiseux-Dao Dr Melodie Malecot Dr Chakib Djediat Dr Arul Marie Charlotte Duval Isabelle Trinchet Hélène Huet

Thanks for your attention

Pr. Cécile Bernard Muséum National d'Histoire Naturelle – Paris cbernard@mnhn.fr